Search results
Results from the WOW.Com Content Network
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]
The zero in the first column represents the zero vector of the same dimension as the vector (different authors use different conventions as to the exact layout). If the columns of A {\displaystyle \mathbf {A} } can be rearranged so that it contains the identity matrix of order p {\displaystyle p} (the number of rows in A {\displaystyle \mathbf ...
The starting point is on the line (,) = only because the line is defined to start and end on integer coordinates (though it is entirely reasonable to want to draw a line with non-integer end points). Candidate point (2,2) in blue and two candidate points in green (3,2) and (3,3)
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
If S is the set of natural numbers, and T is some subset of the natural numbers, then the indicator vector is naturally a single point in the Cantor space: that is, an infinite sequence of 1's and 0's, indicating membership, or lack thereof, in T. Such vectors commonly occur in the study of arithmetical hierarchy.
The column of a positive edge has a 1 in the row corresponding to one endpoint and a −1 in the row corresponding to the other endpoint, just like an edge in an ordinary (unsigned) graph. The column of a negative edge has either a 1 or a −1 in both rows. The line graph and Kirchhoff matrix properties generalize to signed graphs.
Similarly, the upper bandwidth is the smallest number p such that a i,j = 0 whenever i < j − p (Golub & Van Loan 1996, §1.2.1). For example, a tridiagonal matrix has lower bandwidth 1 and upper bandwidth 1. As another example, the following sparse matrix has lower and upper bandwidth both equal to 3. Notice that zeros are represented with ...