Search results
Results from the WOW.Com Content Network
In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.
The linear momentum of a rigid body is the product of the mass of the body and the velocity of its ... combining Euler's two laws into one equation. References
In order to find the weak form of the Navier–Stokes equations, firstly, consider the momentum equation [20] + + = multiply it for a test function , defined in a suitable space , and integrate both members with respect to the domain : [20] + + = Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' theorem ...
This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. σ is a rank two symmetric tensor given by its covariant components. In orthogonal coordinates in three dimensions it is represented as the 3 × 3 matrix:
The Euler momentum equation is an expression of Newton's second law adapted to fluid dynamics. [62] [63] A fluid is described by a velocity field, i.e., a function (,) that assigns a velocity vector to each point in space and time. A small object being carried along by the fluid flow can change velocity for two reasons: first, because the ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Exact conservation laws include conservation of mass-energy, conservation of linear momentum, conservation of angular momentum, and conservation of electric charge. There are also many approximate conservation laws, which apply to such quantities as mass, parity, [1] lepton number, baryon number, strangeness, hypercharge, etc. These quantities ...
Since the partial derivative is a linear operator, the momentum operator is also linear, and because any wave function can be expressed as a superposition of other states, when this momentum operator acts on the entire superimposed wave, it yields the momentum eigenvalues for each plane wave component. These new components then superimpose to ...