enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).

  3. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    The smallest odd integer with abundancy index exceeding 3 is 1018976683725 = 3 3 × 5 2 × 7 2 × 11 × 13 × 17 × 19 × 23 × 29. [8] If p = (p 1, ..., p n) is a list of primes, then p is termed abundant if some integer composed only of primes in p is abundant. A necessary and sufficient condition for this is that the product of p i /(p i − ...

  4. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    This is a list of articles about prime numbers.A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers.

  5. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of 5 ...

  6. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In number theory, the most salient property of factorials is the divisibility of ! by all positive integers up to , described more precisely for prime factors by Legendre's formula. It follows that arbitrarily large prime numbers can be found as the prime factors of the numbers n ! ± 1 {\displaystyle n!\pm 1} , leading to a proof of Euclid's ...

  7. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    Every positive integer greater than 1 is either the product of two or more integer factors greater than 1, in which case it is called a composite number, or it is not, in which case it is called a prime number. For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime

  8. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  9. 120 (number) - Wikipedia

    en.wikipedia.org/wiki/120_(number)

    The sum of its factors (including one and itself) sum to 360, exactly three times 120. Perfect numbers are order two ( 2-perfect ) by the same definition. 120 is the sum of a twin prime pair (59 + 61) and the sum of four consecutive prime numbers (23 + 29 + 31 + 37), four consecutive powers of two (8 + 16 + 32 + 64), and four consecutive powers ...