Search results
Results from the WOW.Com Content Network
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The direct sum of matrices is a special type of block matrix. In particular, the direct sum of square matrices is a block diagonal matrix. The adjacency matrix of the union of disjoint graphs (or multigraphs) is the direct sum of their adjacency matrices. Any element in the direct sum of two vector spaces of matrices can be represented as a ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Eigen is a high-level C++ library of template headers for linear algebra, matrix and vector operations, geometrical transformations, numerical solvers and related algorithms. Eigen is open-source software licensed under the Mozilla Public License 2.0 since version 3.1.1.
Familiar properties of numbers extend to these operations on matrices: for example, addition is commutative, that is, the matrix sum does not depend on the order of the summands: A + B = B + A. [9] The transpose is compatible with addition and scalar multiplication, as expressed by ( c A ) T = c ( A T ) and ( A + B ) T = A T + B T .
In modern mathematics, the sum of an infinite series is defined to be the limit of the sequence of its partial sums, if it exists. The sequence of partial sums of Grandi's series is 1, 0, 1, 0, ..., which clearly does not approach any number (although it does have two accumulation points at 0 and 1). Therefore, Grandi's series is divergent
However, if an infinite number of groupings is performed in an infinite series, then the partial sums of the grouped series may have a different limit than the original series and different groupings may have different limits from one another; the sum of + + + may not equal the sum of + (+) + (+) +.
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...