enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    The input power provided by the cyclist is equal to the product of angular speed (i.e. the number of pedal revolutions per minute times 2π) and the torque at the spindle of the bicycle's crankset. The bicycle's drivetrain transmits the input power to the road wheel , which in turn conveys the received power to the road as the output power of ...

  3. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    is the motor torque constant (SI unit, newton–metre per ampere, N·m/A), see below If two motors with the same K v {\displaystyle K_{\text{v}}} and torque work in tandem, with rigidly connected shafts, the K v {\displaystyle K_{\text{v}}} of the system is still the same assuming a parallel electrical connection.

  4. Kilopondmetre - Wikipedia

    en.wikipedia.org/wiki/Kilopondmetre

    It is abbreviated kp·m or m·kp, older publications often use m­kg and kg­m as well. Torque is a product of the length of a lever and the force applied to the lever. One kilopond is the force applied to one kilogram due to gravitational acceleration; this force is exactly 9.80665 N. This means 1 kp·m = 9.80665 kg·m/s 2 = 9.80665 N·m.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Absorbed dose received per unit of time Gy/s L 2 T −3: Action: S: Momentum of particle multiplied by distance travelled J/Hz L 2 M T −1: scalar Angular acceleration: ω a: Change in angular velocity per unit time rad/s 2: T −2: Area: A: Extent of a surface m 2: L 2: extensive, bivector or scalar Area density: ρ A: Mass per unit area kg ...

  6. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...

  7. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moments of inertia may be expressed in units of kilogram metre squared (kg·m 2) in SI units and pound-foot-second squared (lbf·ft·s 2) in imperial or US units.

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    Therefore, the spring constant k, and each element of the tensor κ, is measured in newtons per meter (N/m), or kilograms per second squared (kg/s 2). For continuous media, each element of the stress tensor σ is a force divided by an area; it is therefore measured in units of pressure, namely pascals (Pa, or N/m 2 , or kg/(m·s 2 ).

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions. [1] [2]