Search results
Results from the WOW.Com Content Network
This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...
Inertial force that appears to act on all objects when viewed in a rotating frame of reference: N⋅rad = kg⋅m⋅rad⋅s −2: L M T −2: bivector Crackle: c →: Change of jounce per unit time: the fifth time derivative of position m/s 5: L T −5: vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I ...
Stress analysis is a primary task for civil, mechanical and aerospace engineers involved in the design of structures of all sizes, such as tunnels, bridges and dams, aircraft and rocket bodies, mechanical parts, and even plastic cutlery and staples. Stress analysis is also used in the maintenance of such structures, and to investigate the ...
The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...
Nine men pull on a rope. The rope in the photo extends into a drawn illustration showing adjacent segments of the rope. One segment is duplicated in a free body diagram showing a pair of action-reaction forces of magnitude T pulling the segment in opposite directions, where T is transmitted axially and is called the tension force.
Engineering stress and engineering strain are approximations to the internal state that may be determined from the external forces and deformations of an object, provided that there is no significant change in size. When there is a significant change in size, the true stress and true strain can be derived from the instantaneous size of the object.
The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that A=B=0 and C is a function of x and y only. [2] This stress function can therefore be used only for two-dimensional problems.
The nominal stress = is the transpose of the first Piola–Kirchhoff stress (PK1 stress, also called engineering stress) and is defined via = = = or = = = This stress is unsymmetric and is a two-point tensor like the deformation gradient.