enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation. General relativity describes the gravitational field by curved space-time; the field equations governing this curvature are nonlinear and therefore difficult to solve in a closed form.

  6. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    But if one requires an exact solution or a solution describing strong fields, the evolution of both the metric and the stress–energy tensor must be solved for at once. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine the evolution of the stress–energy tensor):

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]

  8. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    The Cauchy problem (sometimes called the initial value problem) is the attempt at finding a solution to a differential equation given initial conditions. In the context of general relativity , it means the problem of finding solutions to Einstein's field equations — a system of hyperbolic partial differential equations — given some initial ...

  9. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    In particle physics, a relativistic particle is an elementary particle with kinetic energy greater than or equal to its rest-mass energy given by Einstein's relation, =, or specifically, of which the velocity is comparable to the speed of light. [1]