enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  3. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1 The algorithm performs a fixed sequence of operations ( up to log n ): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value.

  4. Addition-chain exponentiation - Wikipedia

    en.wikipedia.org/wiki/Addition-chain_exponentiation

    In mathematics and computer science, optimal addition-chain exponentiation is a method of exponentiation by a positive integer power that requires a minimal number of multiplications. Using the form of the shortest addition chain , with multiplication instead of addition, computes the desired exponent (instead of multiple) of the base .

  5. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  6. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  7. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.

  8. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.

  9. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem : If p is prime and f ( x ) = a 0 x d + ... + a d is a polynomial with integer coefficients such that p is not a divisor of a 0 , then the congruence f ( x ) ≡ 0 (mod p ) has at most d ...