Search results
Results from the WOW.Com Content Network
An image of multiple chromosomes, taken from many cells. Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. [1] [2] It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems.
Male and female sex-biased genes of A. thaliana have major differences in expression and function. [3] Male genes expressed in the pollen tube regions of the plant struggle in the initiation of protein evolution. [3] This is the result of newly developed mutations being acted upon by positive selection. [3]
In these plants, the new genes are put into the plant before it is grown, so the genes are in every part of the plant, including its seeds. [21] The plant's offspring inherit the new genes, which has led to concern about the spread of new traits into wild plants. [22]
The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects (including butterflies and moths), the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons.
The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms.This number, along with the visual appearance of the chromosome, is known as the karyotype, [1] [2] [3] and can be found by looking at the chromosomes through a microscope.
Fungus–plant-mediated horizontal gene transfer can occur via phagotrophic mechanisms (mediated by phagotrophic eukaryotes) and nonphagotropic mechanisms. Nonphagotrophic mechanisms have been seen in the transmission of transposable elements, plastid-derived endosymbiotic gene transfer, prokaryote-derived gene transfer, Agrobacterium tumefaciens-mediated DNA transfer, cross-species ...
The triangle of U (/ uː / OO) is a theory about the evolution and relationships among the six most commonly known members of the plant genus Brassica. The theory states that the genomes of three ancestral diploid species of Brassica combined to create three common tetraploid vegetables and oilseed crop species. [ 1 ]
Genome-wide incompatibilities have been identified in Xipophorous fish, [108] chimeric genes and mutations of orthologous genes cause incompatibilities in early generation experimental Cyprinidae goldfish - carp hybrids [109] and mito-nuclear incompatibilies are found to have a key role e.g. in Italian sparrows, [70] [110] fungus [111] and cyto ...