Search results
Results from the WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes. Important in navigation , it is a special case of a more general formula in spherical trigonometry , the law of haversines , that relates the sides and angles of spherical triangles.
Geographical distance or geodetic distance is the distance measured along the surface of the Earth, or the shortest arch length. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The reverse conversion is harder: given X-Y-Z can immediately get longitude, but no closed formula for latitude and height exists. See "Geodetic system." Using Bowring's formula in 1976 Survey Review the first iteration gives latitude correct within 10-11 degree as long as the point is within 10,000 meters above or 5,000 meters below the ellipsoid.
The rectifying latitude, μ, is the meridian distance scaled so that its value at the poles is equal to 90 degrees or π / 2 radians: = where the meridian distance from the equator to a latitude ϕ is (see Meridian arc)
Informally, specifying a geographic location usually means giving the location's latitude and longitude.The numerical values for latitude and longitude can occur in a number of different units or formats: [2]
The length of a degree of longitude (east–west distance) depends only on the radius of a circle of latitude. For a sphere of radius a that radius at latitude φ is a cos φ , and the length of a one-degree (or π / 180 radian ) arc along a circle of latitude is
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and