enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the ...

  3. Moving average - Wikipedia

    en.wikipedia.org/wiki/Moving_average

    The Moving Median is a more robust alternative to the Moving Average when it comes to estimating the underlying trend in a time series. While the Moving Average is optimal for recovering the trend if the fluctuations around the trend are normally distributed, it is susceptible to the impact of rare events such as rapid shocks or anomalies.

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.

  5. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.

  7. Unit root - Wikipedia

    en.wikipedia.org/wiki/Unit_root

    In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...

  8. Autocorrelation - Wikipedia

    en.wikipedia.org/wiki/Autocorrelation

    For example, to calculate the autocorrelation of the real signal sequence = (,,) (i.e. =, =, =, and = for all other values of i) by hand, we first recognize that the definition just given is the same as the "usual" multiplication, but with right shifts, where each vertical addition gives the autocorrelation for particular lag values: +

  9. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series: random data plus trend, with best-fit line and different applied filters. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time.