Search results
Results from the WOW.Com Content Network
In the physical sciences, the term spectrum was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersed through a prism. [2] [3] Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral ...
In the physical sciences, the term spectrum was introduced first into optics by Isaac Newton in the 17th century, referring to the range of colors observed when white light was dispersed through a prism. [1] [2] Soon the term referred to a plot of light intensity or power as a function of frequency or wavelength, also known as a spectral ...
The term was coined by Arthur Schuster in 1898. [1] Today, the periodogram is a component of more sophisticated methods (see spectral estimation ). It is the most common tool for examining the amplitude vs frequency characteristics of FIR filters and window functions .
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. [1] It is a result of studies of linear algebra and the solutions of systems of linear equations and their ...
In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.
Spectral analysis or spectrum analysis is analysis in terms of a spectrum of frequencies or related quantities such as energies, eigenvalues, etc. In specific areas it may refer to: Spectroscopy in chemistry and physics, a method of analyzing the properties of matter from their electromagnetic interactions
For transfer functions (e.g., Bode plot, chirp) the complete frequency response may be graphed in two parts: power versus frequency and phase versus frequency—the phase spectral density, phase spectrum, or spectral phase. Less commonly, the two parts may be the real and imaginary parts of the transfer function.
The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues.