Search results
Results from the WOW.Com Content Network
In chemistry, the hydrogenation of carbon–nitrogen double bonds is the addition of the elements of dihydrogen (H 2) across a carbon–nitrogen double bond, forming amines or amine derivatives. [1] Although a variety of general methods have been developed for the enantioselective hydrogenation of ketones, [ 2 ] methods for the hydrogenation of ...
Consequently, the elimination product is always syn and rarely occurs with 6-membered rings. ( Rings with 5 or 7 or more members undergo the reaction just fine.) [ 6 ] [ 7 ] [ 8 ] This organic reaction is closely related to the Hofmann elimination , [2] but the base is a part of the leaving group .
2 R-C≡N + 4 H 2 → (R-CH 2) 2 NH + NH 3 3 R-C≡N + 6 H 2 → (R-CH 2) 3 N + 2 NH 3. Such reactions proceed via enamine intermediates. [8] The most important reaction condition for selective primary amine production is catalyst choice. [1] Other important factors include solvent choice, solution pH, steric effects, temperature, and the ...
Catalytic hydrogenation using platinum(IV) oxide (PtO 2) [23] or Raney nickel [24] Iron metal in refluxing acetic acid [25] Samarium diiodide [26] Raney nickel, platinum on carbon, or zinc dust and formic acid or ammonium formate [6] α,β-Unsaturated nitro compounds can be reduced to saturated amines by: Catalytic hydrogenation over palladium ...
Amine. In chemistry, amines (/ ə ˈ m iː n, ˈ æ m iː n /, [1] [2] UK also / ˈ eɪ m iː n / [3]) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.Formally, amines are derivatives of ammonia (NH 3 (in which the bond angle between the nitrogen and hydrogen is 170°), wherein one or more hydrogen atoms have been replaced by a substituent such as an ...
Cyclohexylamine is an organic compound, belonging to the aliphatic amine class. It is a colorless liquid, although, like many amines, samples are often colored due to contaminants. It is a colorless liquid, although, like many amines, samples are often colored due to contaminants.
[6] [7] According to McQuade, the reaction between methyl acrylate and p-nitrobenzaldehyde is second-order relative to the aldehyde. Moreover, it showed a significant kinetic isotope effect for the acrylate's α-hydrogen (5.2 in DMSO, but ≥2 in all solvents), which would imply that proton abstraction is the rate-determining step.
The Béchamp reduction (or Béchamp process) is a chemical reaction that converts aromatic nitro compounds to their corresponding anilines using iron as the reductant: [1] 4 C 6 H 5 NO 2 + 9 Fe + 4 H 2 O → 4 C 6 H 5 NH 2 + 3 Fe 3 O 4. This reaction was once a major route to aniline, but catalytic hydrogenation is the preferred method. [2]