Search results
Results from the WOW.Com Content Network
Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. [1]
Lake stratification is the tendency of lakes to form separate and distinct thermal layers during warm weather. Typically stratified lakes show three distinct layers: the epilimnion, comprising the top warm layer; the thermocline (or metalimnion), the middle layer, whose depth may change throughout the day; and the colder hypolimnion, extending to the floor of the lake.
Stratification occurs in all ocean basins and also in other water bodies. Stratified layers are a barrier to the mixing of water, which impacts the exchange of heat, carbon, oxygen and other nutrients. [1] The surface mixed layer is the uppermost layer in the ocean and is well mixed by mechanical (wind) and thermal (convection) effects.
The separation of water into layers based on density is known as stratification. Stratification by layers occurs in all ocean basins. The stratified layers limit how much vertical water mixing takes place, reducing the exchange of heat, carbon, oxygen and particles between the upper ocean and the interior. [54]
A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) with a high gradient of distinct temperature differences associated with depth.
The epilimnion or surface layer is the top-most layer in a thermally stratified lake.. The epilimnion is the layer that is most affected by sunlight, its thermal energy heating the surface, thereby making it warmer and less dense.
Ocean temperatures more than 20 metres below the surface vary by region and time. They contribute to variations in ocean heat content and ocean stratification. [11] The increase of both ocean surface temperature and deeper ocean temperature is an important effect of climate change on oceans. [11]
This effect would be caused by increased warming and thermal expansion of coastal waters, which would transfer less of their heat toward Europe; it is one of the reasons sea level rise along the U.S. East Coast is estimated to be three-to-four times higher than the global average.