Search results
Results from the WOW.Com Content Network
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.
ANYA [16] - Finds optimal any-angle paths by restricting the search space to the Taut paths (a path where every heading change in the path “wraps” tightly around some obstacle); looking at an interval of points as a node rather than a single point. The fastest online optimal technique known. This algorithm is restricted to 2D grids.
A common example of a graph-based pathfinding algorithm is Dijkstra's algorithm. [3] This algorithm begins with a start node and an "open set" of candidate nodes. At each step, the node in the open set with the lowest distance from the start is examined.
It is possible to adapt Dijkstra's algorithm to handle negative weights by combining it with the Bellman-Ford algorithm (to remove negative edges and detect negative cycles): Johnson's algorithm. The A* algorithm is a generalization of Dijkstra's algorithm that reduces the size of the subgraph that must be explored, if additional information is ...
LPA* maintains two estimates of the start distance g*(n) for each node: . g(n), the previously calculated g-value (start distance) as in A*; rhs(n), a lookahead value based on the g-values of the node's predecessors (the minimum of all g(n' ) + d(n' , n), where n' is a predecessor of n and d(x, y) is the cost of the edge connecting x and y)
In computer science, jump point search (JPS) is an optimization to the A* search algorithm for uniform-cost grids. It reduces symmetries in the search procedure by means of graph pruning, [1] eliminating certain nodes in the grid based on assumptions that can be made about the current node's neighbors, as long as certain conditions relating to the grid are satisfied.
For the simplest version of Theta*, the main loop is much the same as that of A*. The only difference is the _ function. Compared to A*, the parent of a node in Theta* does not have to be a neighbor of the node as long as there is a line-of-sight between the two nodes.
function simple memory bounded A *-star (problem): path queue: set of nodes, ordered by f-cost; begin queue. insert (problem. root-node); while True do begin if queue. empty then return failure; //there is no solution that fits in the given memory node:= queue. begin (); // min-f-cost-node if problem. is-goal (node) then return success; s:= next-successor (node) if! problem. is-goal (s ...