Search results
Results from the WOW.Com Content Network
Functions involving two or more variables require multidimensional array indexing techniques. The latter case may thus employ a two-dimensional array of power[x][y] to replace a function to calculate x y for a limited range of x and y values. Functions that have more than one result may be implemented with lookup tables that are arrays of ...
In mathematics, a multivalued function, [1] multiple-valued function, [2] many-valued function, [3] or multifunction, [4] is a function that has two or more values in its range for at least one point in its domain. [5]
OLAP tools enable users to analyse multidimensional data interactively from multiple perspectives. OLAP consists of three basic analytical operations: consolidation (roll-up), drill-down, and slicing and dicing. [6]: 402–403 Consolidation involves the aggregation of data that can be accumulated and computed in one or more dimensions. For ...
These for example may try to find upper bounds for the "sieved" sets, rather than an exact formula. Let A 1, ..., A n be arbitrary sets and p 1, ..., p n real numbers in the closed unit interval [0, 1]. Then, for every even number k in {0, ..., n}, the indicator functions satisfy the inequality: [19]
Many-valued logic (also multi-or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than
Formulas in the B column multiply values from the A column using relative references, and the formula in B4 uses the SUM() function to find the sum of values in the B1:B3 range. A formula identifies the calculation needed to place the result in the cell it is contained within.
When all literals of a one-in-three 3-SAT formula are positive, the satisfiability problem is called one-in-three positive 3-SAT. One-in-three 3-SAT, together with its positive case, is listed as NP-complete problem "LO4" in the standard reference Computers and Intractability: A Guide to the Theory of NP-Completeness by Michael R. Garey and ...
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.