enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spinon - Wikipedia

    en.wikipedia.org/wiki/Spinon

    Research published in July 2009 by the University of Cambridge and the University of Birmingham in England showed that electrons could jump from the surface of the metal onto a closely located quantum wire by quantum tunneling, and upon doing so, will separate into two quasiparticles, named spinons and holons by the researchers. [3]

  3. Electromigration - Wikipedia

    en.wikipedia.org/wiki/Electromigration

    Electromigration (red arrow) is due to the momentum transfer from the electrons moving in a wire. Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms.

  4. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The two charge carriers, electrons and holes, will typically have different drift velocities for the same electric field. Quasi-ballistic transport is possible in solids if the electrons are accelerated across a very small distance (as small as the mean free path), or for a very short time (as short as the mean free time). In these cases, drift ...

  5. Atomic electron transition - Wikipedia

    en.wikipedia.org/wiki/Atomic_electron_transition

    Electrons jumping to energy levels of smaller n emit electromagnetic radiation in the form of a photon. Electrons can also absorb passing photons, which drives a quantum jump to a level of higher n. The larger the energy separation between the electron's initial and final state, the shorter the photons' wavelength. [4]

  6. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity. When a DC voltage is applied, the electron drift velocity will increase in speed proportionally to the strength of the electric field. The drift velocity in a 2 mm diameter copper wire in 1 ampere current is ...

  7. Drift velocity - Wikipedia

    en.wikipedia.org/wiki/Drift_velocity

    At 60 Hz alternating current, this means that, within half a cycle (1/120th sec.), on average the electrons drift less than 0.2 μm. In context, at one ampere around 3 × 10 16 electrons will flow across the contact point twice per cycle. But out of around 1 × 10 22 movable electrons per meter of wire, this is an insignificant fraction.

  8. Quantum wire - Wikipedia

    en.wikipedia.org/wiki/Quantum_wire

    If the diameter of a wire is sufficiently small, electrons will experience quantum confinement in the transverse direction. As a result, their transverse energy will be limited to a series of discrete values. One consequence of this quantization is that the classical formula for calculating the electrical resistance of a wire,

  9. Theory of solar cells - Wikipedia

    en.wikipedia.org/wiki/Theory_of_solar_cells

    Transparent conducting electrodes are essential components of solar cells. It is either a continuous film of indium tin oxide or a conducting wire network, in which wires are charge collectors while voids between wires are transparent for light. An optimum density of wire network is essential for the maximum solar cell performance as higher ...