Search results
Results from the WOW.Com Content Network
The formula for an integration by parts is () ′ = [() ()] ′ ().. Beside the boundary conditions, we notice that the first integral contains two multiplied functions, one which is integrated in the final integral (′ becomes ) and one which is differentiated (becomes ′).
A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [ 5 ] expressed as:
Fix a complex number .If = for and () =, then () = ⌊ ⌋ and the formula becomes = ⌊ ⌋ = ⌊ ⌋ + ⌊ ⌋ +. If () >, then the limit as exists and yields the ...
Semi-log plot of solutions of + + = for integer , , and , and .Green bands denote values of proven not to have a solution.. In the mathematics of sums of powers, it is an open problem to characterize the numbers that can be expressed as a sum of three cubes of integers, allowing both positive and negative cubes in the sum.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
The value of this limit, should it exist, is the (C, α) sum of the integral. Analogously to the case of the sum of a series, if α = 0, the result is convergence of the improper integral. In the case α = 1, (C, 1) convergence is equivalent to the existence of the limit
Legendre's three-square theorem states which numbers can be expressed as the sum of three squares; Jacobi's four-square theorem gives the number of ways that a number can be represented as the sum of four squares. For the number of representations of a positive integer as a sum of squares of k integers, see Sum of squares function.