enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    A test which reliably detects the presence of a condition, resulting in a high number of true positives and low number of false negatives, will have a high sensitivity. This is especially important when the consequence of failing to treat the condition is serious and/or the treatment is very effective and has minimal side effects.

  3. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    They use the sensitivity and specificity of the test to determine whether a test result usefully changes the probability that a condition (such as a disease state) exists. The first description of the use of likelihood ratios for decision rules was made at a symposium on information theory in 1954. [ 1 ]

  4. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  5. What Really Causes a False Positive COVID-19 Test? Experts ...

    www.aol.com/false-positive-covid-19-test...

    All rapid tests currently authorized for home use by the Food and Drug Administration (FDA) have high sensitivity and specificity, meaning they have a high accuracy rate.

  6. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors ...

  7. Diagnostic odds ratio - Wikipedia

    en.wikipedia.org/wiki/Diagnostic_odds_ratio

    The log diagnostic odds ratio can also be used to study the trade-off between sensitivity and specificity [5] [6] by expressing the log diagnostic odds ratio in terms of the logit of the true positive rate (sensitivity) and false positive rate (1 − specificity), and by additionally constructing a measure, :

  8. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    It can be seen from the length of the arrows that, at low pre-test probabilities, a positive test gives a greater change in absolute probability than a negative test (a property that is generally valid as long as the specificity isn't much higher than the sensitivity). Similarly, at high pre-test probabilities, a negative test gives a greater ...

  9. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    As the cost of a false negative in this scenario is extremely high (not detecting a bomb being brought onto a plane could result in hundreds of deaths) whilst the cost of a false positive is relatively low (a reasonably simple further inspection) the most appropriate test is one with a low statistical specificity but high statistical ...