Search results
Results from the WOW.Com Content Network
In order to still use the Box–Jenkins approach, one could difference the series and then estimate models such as ARIMA, given that many commonly used time series (e.g. in economics) appear to be stationary in first differences. Forecasts from such a model will still reflect cycles and seasonality that are present in the data.
Cointegration is a statistical property of a collection (X 1, X 2, ..., X k) of time series variables. First, all of the series must be integrated of order d.Next, if a linear combination of this collection is integrated of order less than d, then the collection is said to be co-integrated.
The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [ 12 ] [ 13 ] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative ( Box–Jenkins ) method for choosing and estimating them.
Studies in astronomical time series analysis. I – Modeling random processes in the time domain. Astrophysical Journal Supplement Series. Vol. 45. pp. 1– 71. Wold, H. (1954) A Study in the Analysis of Stationary Time Series, Second revised edition, with an Appendix on "Recent Developments in Time Series Analysis" by Peter Whittle. Almqvist ...
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
The data from a study can also be analyzed to consider secondary hypotheses inspired by the initial results, or to suggest new studies. A secondary analysis of the data from a planned study uses tools from data analysis, and the process of doing this is mathematical statistics. Data analysis is divided into:
The sample autocorrelation plot and the sample partial autocorrelation plot are compared to the theoretical behavior of these plots when the order is known. Specifically, for an AR(1) process, the sample autocorrelation function should have an exponentially decreasing appearance. However, higher-order AR processes are often a mixture of ...