Search results
Results from the WOW.Com Content Network
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by Köthe (1930), based on a suggestion of Wedderburn (1908). In the next few years several other radicals were discovered, of which the most important example is the Jacobson ...
For a general ring with unity R, the Jacobson radical J(R) is defined as the ideal of all elements r ∈ R such that rM = 0 whenever M is a simple R-module.That is, = {=}. This is equivalent to the definition in the commutative case for a commutative ring R because the simple modules over a commutative ring are of the form R / for some maximal ideal of R, and the annihilators of R / in R are ...
The concept of the Jacobson radical of a ring; that is, the intersection of all right (left) annihilators of simple right (left) modules over a ring, is one example. The fact that the Jacobson radical can be viewed as the intersection of all maximal right (left) ideals in the ring, shows how the internal structure of the ring is reflected by ...
In other words: "The only element of a Noetherian ring in all powers of J is 0." The original conjecture posed by Jacobson in 1956 [ 1 ] asked about noncommutative one-sided Noetherian rings, however Israel Nathan Herstein produced a counterexample in 1965, [ 2 ] and soon afterwards, Arun Vinayak Jategaonkar produced a different example which ...
A ring R (with 1) is called semiprimary if R/J(R) is semisimple and J(R) is a nilpotent ideal, where J(R) denotes the Jacobson radical. The theorem states that if R is a semiprimary ring and M is an R-module, the three module conditions Noetherian, Artinian and "has a composition series" are equivalent.
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
The factor ring of a prime ideal is a prime ring in general and is an integral domain for commutative rings. [14] Radical ideal or semiprime ideal: A proper ideal I is called radical or semiprime if for any a in , if a n is in I for some n, then a is in I.
The classical ring of quotients for any commutative Noetherian ring is a semilocal ring. The endomorphism ring of an Artinian module is a semilocal ring. Semi-local rings occur for example in algebraic geometry when a (commutative) ring R is localized with respect to the multiplicatively closed subset S = ∩ (R \ p i ) , where the p i are ...