Search results
Results from the WOW.Com Content Network
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
An extended binary tree, showing internal nodes as yellow circles and external nodes as red squares. A binary tree is a rooted tree in which each node may have up to two children (the nodes directly below it in the tree), and those children are designated as being either left or right.
Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields . Product type (also called a tuple), a record in which the fields are not named
The function inorderNext [2]: 60 returns an in-order-neighbor of node, either the in-order-successor (for dir=1) or the in-order-predecessor (for dir=0), and the updated stack, so that the binary search tree may be sequentially in-order-traversed and searched in the given direction dir further on.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Searching is similar to searching a binary search tree. Starting at the root, the tree is recursively traversed from top to bottom. At each level, the search reduces its field of view to the child pointer (subtree) whose range includes the search value. A subtree's range is defined by the values, or keys, contained in its parent node.