Search results
Results from the WOW.Com Content Network
Spectrochemistry is the application of spectroscopy in several fields of chemistry. It includes analysis of spectra in chemical terms, and use of spectra to derive the structure of chemical compounds, and also to qualitatively and quantitively analyze their presence in the sample.
Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and electronic structure of matter to be investigated at the atomic, molecular and macro scale, and over astronomical distances.
This class is named after the prototype and brightest example, RR Lyrae. They are pulsating horizontal branch stars of spectral class A or F, with a mass of around half the Sun 's. They are thought to have shed mass during the red-giant branch phase, and were once stars at around 0.8 solar masses.
The spectral class of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters O, B, A, F, G, K, and M, a sequence from the hottest (O type) to the coolest (M type).
The definition of type B-type stars was the presence of non-ionized helium lines with the absence of singly ionized helium in the blue-violet portion of the spectrum. All of the spectral classes, including the B type, were subdivided with a numerical suffix that indicated the degree to which they approached the next classification.
Spectral analysis or spectrum analysis is analysis in terms of a spectrum of frequencies or related quantities such as energies, eigenvalues, etc. In specific areas it may refer to: Spectroscopy in chemistry and physics, a method of analyzing the properties of matter from their electromagnetic interactions
The spectrometer uses a prism or a grating to spread the light into a spectrum. This allows astronomers to detect many of the chemical elements by their characteristic spectral lines. These lines are named for the elements which cause them, such as the hydrogen alpha, beta, and gamma lines. A glowing object will show bright spectral lines.
An example of a spectrometer developed by William Henry Bragg, which was used by both father and son to investigate the structure of crystals, can be seen at the Science Museum, London. [3] Jointly they measured the X-ray wavelengths of many elements to high precision, using high-energy electrons as excitation source.