Search results
Results from the WOW.Com Content Network
Donnan equilibrium across a cell membrane (schematic). The Gibbs–Donnan effect (also known as the Donnan's effect, Donnan law, Donnan equilibrium, or Gibbs–Donnan equilibrium) is a name for the behaviour of charged particles near a semi-permeable membrane that sometimes fail to distribute evenly across the two sides of the membrane. [1]
Electric charge (symbol q, sometimes Q) is a physical property of matter that causes it to experience a force when placed in an electromagnetic field. Electric charge can be positive or negative. Like charges repel each other and unlike charges attract each other. An object with no net charge is referred to as electrically neutral.
Electric charges attract or repel one another with a force inversely proportional to the square of the distance between them: opposite charges attract, like charges repel. [ 7 ] Magnetic poles (or states of polarization at individual points) attract or repel one another in a manner similar to positive and negative charges and always exist as ...
This separation of charges is what causes the membrane potential. The system as a whole is electro-neutral. The uncompensated positive charges outside the cell, and the uncompensated negative charges inside the cell, physically line up on the membrane surface and attract each other across the lipid bilayer. Thus, the membrane potential is ...
Unlike the photon in electromagnetism, which is neutral, the gluon carries a color charge. Quarks and gluons are the only fundamental particles that carry non-vanishing color charge, and hence they participate in strong interactions only with each other. The strong force is the expression of the gluon interaction with other quark and gluon ...
Illustration of the electric field surrounding a positive (red) and a negative (blue) charge. Electrostatic fields are electric fields that do not change with time. Such fields are present when systems of charged matter are stationary, or when electric currents are unchanging. In that case, Coulomb's law fully describes the field. [17]
Franklin's theory is also notable, because it is the first theory that viewed electricity as the accumulation of 'charge' from elsewhere, rather than an excitation of the matter already present in an object. [6] Franklin's theory also provides the basis for conventional current, the thinking of electricity as being the movement of positive ...
If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ^; the charges repel each other. If the charges have opposite signs then the product q 1 q 2 {\displaystyle q_{1}q_{2}} is negative and the direction of the force on q 1 {\displaystyle q_{1}} is − r ^ 12 {\textstyle ...