Search results
Results from the WOW.Com Content Network
An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth.The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2]
where r is the distance between the centre of the Earth and the body (see below), and here we take to be the mass of the Earth and m to be the mass of the body. Additionally, Newton's second law, F = ma, where m is mass and a is acceleration, here tells us that =
However, the total energy of the Earth orbiting the Sun (kinetic energy + gravitational potential energy) is about 1.14 × 10 36 joules of which only 200 watts (joules per second) is lost through gravitational radiation, leading to a decay in the orbit by about 1 × 10 −15 meters per day or roughly the diameter of a proton.
The choice of solar mass, M ☉, as the basic unit for planetary mass comes directly from the calculations used to determine planetary mass.In the most precise case, that of the Earth itself, the mass is known in terms of solar masses to twelve significant figures: the same mass, in terms of kilograms or other Earth-based units, is only known to five significant figures, which is less than a ...
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
Non-zero coefficients C n m, S n m correspond to a lack of rotational symmetry around the polar axis for the mass distribution of Earth, i.e. to a "tri-axiality" of Earth. For large values of n the coefficients above (that are divided by r ( n + 1) in ( 9 )) take very large values when for example kilometers and seconds are used as units.
Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...