Search results
Results from the WOW.Com Content Network
Possibly as a result of this unique property, the spira mirabilis has evolved in nature, appearing in certain growing forms such as nautilus shells and sunflower heads. Jacob Bernoulli wanted such a spiral engraved on his headstone along with the phrase " Eadem mutata resurgo " ("Although changed, I shall arise the same."), but, by error, an ...
The recursive nature of some patterns is obvious in certain examples—a branch from a tree or a frond from a fern is a miniature replica of the whole: not identical, but similar in nature. Similarly, random fractals have been used to describe/create many highly irregular real-world objects, such as coastlines and mountains.
Patterns in nature are visible regularities of form found in the natural world. These patterns recur in different contexts and can sometimes be modelled mathematically . Natural patterns include symmetries , trees , spirals , meanders , waves , foams , tessellations , cracks and stripes. [ 1 ]
The theoretical fractal dimension for this fractal is 5/3 ≈ 1.67; its empirical fractal dimension from box counting analysis is ±1% [8] using fractal analysis software. A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale.
Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...
The Fractal Geometry of Nature is a revised and enlarged version of his 1977 book entitled Fractals: Form, Chance and Dimension, which in turn was a revised, enlarged, and translated version of his 1975 French book, Les Objets Fractals: Forme, Hasard et Dimension. American Scientist put the book in its one hundred books of 20th century science. [3]
Changes in physical constants are not meaningful if they result in an observationally indistinguishable universe. For example, a "change" in the speed of light c would be meaningless if accompanied by a corresponding "change" in the elementary charge e so that the ratio e 2 : c (the fine-structure constant) remained unchanged.
For this he defines statistically self-similar figures and says that these are encountered in nature. The paper is important because it is a "turning point" in Mandelbrot's early thinking on fractals. [14] It is an example of the linking of mathematical objects with natural forms that was a theme of much of his later work.