Search results
Results from the WOW.Com Content Network
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
Parallelogram (Parallel Motion [Note 2]) and Antiparallelogram (Contraparallelogram, Inverse Parallelogram, Butterfly, Bow-tie) linkages; Deltoid (Galloway) and Trapezium (Arglin) linkages; Three revolute joints: It is denoted as RRRP, PRRR, RPRR, or RRPR, constructed from four links connected by three revolute joints and one prismatic joint.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
This group is frequently seen in everyday life, since the most common arrangement of bricks in a brick building (running bond) utilises this group (see example below). The rotational symmetry of order 2 with centres of rotation at the centres of the sides of the rhombus is a consequence of the other properties.
A parallelogram is (under the inclusive definition) a trapezoid with two pairs of parallel sides. A parallelogram has central 2-fold rotational symmetry (or point reflection symmetry). It is possible for obtuse trapezoids or right trapezoids (rectangles). A tangential trapezoid is a trapezoid that has an incircle.
Drafting pantograph in use Pantograph used for scaling a picture. The red shape is traced and enlarged. Pantograph 3d rendering. A pantograph (from Greek παντ- 'all, every' and γραφ- 'to write', from their original use for copying writing) is a mechanical linkage connected in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical ...
A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.