Search results
Results from the WOW.Com Content Network
A fundamental tool in robot kinematics is the kinematics equations of the kinematic chains that form the robot. These non-linear equations are used to map the joint parameters to the configuration of the robot system. Kinematics equations are also used in biomechanics of the skeleton and computer animation of articulated characters.
Kinematic models are essential for controlling the movements of robots. Robotics engineers use forward kinematics to calculate the positions and orientations of a robot's end-effector, given specific joint angles, and inverse kinematics to determine the joint movements necessary for a desired end-effector position. These calculations allow for ...
This page was last edited on 21 November 2024, at 15:05 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. [ 1 ] The kinematics equations of the robot are used in robotics , computer games , and animation .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The following outline is provided as an overview of and topical guide to robotics: . Robotics is a branch of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing.
The JPL mobile robot ATHLETE is a platform with six serial chain legs ending in wheels. The arms, fingers, and head of the JSC Robonaut are modeled as kinematic chains. The movement of the Boulton & Watt steam engine is studied as a system of rigid bodies connected by joints forming a kinematic chain.
Initially, a robot with only one leg, and a very small foot could stay upright simply by hopping. The movement is the same as that of a person on a pogo stick. As the robot falls to one side, it would jump slightly in that direction, in order to catch itself. [80] Soon, the algorithm was generalised to two and four legs.