Search results
Results from the WOW.Com Content Network
Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.
A hexahedron with three pairs of parallel faces; A prism of which the base is a parallelogram; Rhombohedron: A parallelepiped where all edges are the same length; A cube, except that its faces are not squares but rhombi; Cuboid: A convex polyhedron bounded by six quadrilateral faces, whose polyhedral graph is the same as that of a cube [4]
Cuboid – , where , , and are the sides' length; Cylinder – π r 2 h {\textstyle \pi r^{2}h} , where r {\textstyle r} is the base's radius and h {\textstyle h} is the cone's height; Ellipsoid – 4 3 π a b c {\textstyle {\frac {4}{3}}\pi abc} , where a {\textstyle a} , b {\textstyle b} , and c {\textstyle c} are the semi-major and semi ...
An oblique prism is a prism in which the joining edges and faces are not perpendicular to the base faces. Example: a parallelepiped is an oblique prism whose base is a parallelogram, or equivalently a polyhedron with six parallelogram faces. Right Prism. A right prism is a prism in which the joining edges and faces are perpendicular to the base ...
A rectangular cuboid is a convex polyhedron with six rectangle faces. The dihedral angles of a rectangular cuboid are all right angles, and its opposite faces are congruent. [2] By definition, this makes it a right rectangular prism. Rectangular cuboids may be referred to colloquially as "boxes" (after the physical object).
An almost-perfect cuboid has 6 out of the 7 lengths as rational. Such cuboids can be sorted into three types, called body, edge, and face cuboids. [14] In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f ...
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.
If the elements of the cylinder are perpendicular to the planes containing the bases, the cylinder is a right cylinder, otherwise it is called an oblique cylinder. If the bases are disks (regions whose boundary is a circle) the cylinder is called a circular cylinder. In some elementary treatments, a cylinder always means a circular cylinder. [2]