Search results
Results from the WOW.Com Content Network
Aerenchyma in stem cross section of a typical wetland plant. Aerenchyma or aeriferous parenchyma [1] or lacunae, is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems and roots of some plants, which allows exchange of gases between the shoot and the root. [2]
Acellular dermis is a type of biomaterial derived from processing human or animal tissues to remove cells and retain portions of the extracellular matrix (ECM). These materials are typically cell-free, distinguishing them from classical allografts and xenografts, can be integrated or incorporated into the body, and have been FDA approved for human use for more than 10 years in a wide range of ...
This tissue provides support to plants and also stores food. Chlorenchyma is a special type of parenchyma that contains chlorophyll and performs photosynthesis. In aquatic plants, aerenchyma tissues, or large air cavities, give support to float on water by making them buoyant. Parenchyma cells called idioblasts have metabolic waste.
Mesoderm embryonic tissues (paraxial mesoderm, intermediate mesoderm, lateral plate mesoderm and notochord). Also showing the neural tube and the yolk sac . Paraxial mesoderm
Parenchyma is the tissue made up of cells and intercellular spaces that fills the interior of the body of a flatworm, which is an acoelomate. This is a spongy tissue also known as a mesenchymal tissue , in which several types of cells are lodged in their extracellular matrices .
Sclerenchyma is the tissue which makes the plant hard and stiff. Sclerenchyma is the supporting tissue in plants. Two types of sclerenchyma cells exist: fibers cellular and sclereids. Their cell walls consist of cellulose, hemicellulose, and lignin. Sclerenchyma cells are the principal supporting cells in plant tissues that have ceased elongation.
The epidermis is the outermost of the three layers that comprise the skin, the inner layers being the dermis and hypodermis. [1] The epidermal layer provides a barrier to infection from environmental pathogens [2] and regulates the amount of water released from the body into the atmosphere through transepidermal water loss.
Immunohistochemistry can be performed on tissue that has been fixed and embedded in paraffin, but also cryopreservated (frozen) tissue.Based on the way the tissue is preserved, there are different steps to prepare the tissue for immunohistochemistry, but the general method includes proper fixation, antigen retrieval incubation with primary antibody, then incubation with secondary antibody.