Search results
Results from the WOW.Com Content Network
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Designing a crystalline material with targeted properties requires an understanding of the material's molecular and crystal features in relation to its mechanical properties. [22] Four mechanical properties are of interest for crystalline materials: plasticity, elasticity, brittleness, and shear strength). [21]
The characterization of mechanical properties in polymers typically refers to a measure of the strength, elasticity, viscoelasticity, and anisotropy of a polymeric material. The mechanical properties of a polymer are strongly dependent upon the Van der Waals interactions of the polymer chains, and the ability of the chains to elongate and align ...
A material cannot be used in industry if no economically viable production method for it has been developed. Therefore, developing processing methods for materials that are reasonably effective and cost-efficient is vital to the field of materials science. Different materials require different processing or synthesis methods.
Solid mechanics is fundamental for civil, aerospace, nuclear, biomedical and mechanical engineering, for geology, and for many branches of physics and chemistry such as materials science. [1] It has specific applications in many other areas, such as understanding the anatomy of living beings, and the design of dental prostheses and surgical ...
The mechanical properties of carbon nanotubes reveal them as one of the strongest materials in nature. Carbon nanotubes (CNTs) are long hollow cylinders of graphene . Although graphene sheets have 2D symmetry, carbon nanotubes by geometry have different properties in axial and radial directions.
Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. Along with solid-state chemistry, it also has direct applications in the technology of transistors and semiconductors.
Fracture surface of a fiber-reinforced ceramic composed of SiC fibers and SiC matrix. The fiber pull-out mechanism shown is the key to CMC properties. CMC shaft sleeves. In materials science ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix.