Search results
Results from the WOW.Com Content Network
In graph theory, the hypercube graph Q n is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q 3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Q n has 2 n vertices, 2 n – 1 n edges, and is a regular graph with n edges touching each vertex.
This can be generalized to any number of dimensions. This process of sweeping out volumes can be formalized mathematically as a Minkowski sum: the d-dimensional hypercube is the Minkowski sum of d mutually perpendicular unit-length line segments, and is therefore an example of a zonotope. The 1-skeleton of a hypercube is a hypercube graph.
The Dalí cross, a net of a tesseract The tesseract can be unfolded into eight cubes into 3D space, just as the cube can be unfolded into six squares into 2D space.. In geometry, a tesseract or 4-cube is a four-dimensional hypercube, analogous to a two-dimensional square and a three-dimensional cube. [1]
The resulting graph is a bipartite Kneser graph; the graph formed in this way with n = 2 has 20 vertices and 30 edges, and is called the Desargues graph. All median graphs are partial cubes. [3] The trees and hypercube graphs are examples of median graphs. Since the median graphs include the squaregraphs, simplex graphs, and Fibonacci cubes, as ...
An induced path of length four in a cube.Finding the longest induced path in a hypercube is known as the snake-in-the-box problem.. In the mathematical area of graph theory, an induced path in an undirected graph G is a path that is an induced subgraph of G.
Hypercube graphs exhibit a similar phenomenon to cycle graphs. The two- and three-dimensional hypercube graphs (the 4-cycle and the graph of a cube, respectively) have distinguishing number three. However, every hypercube graph of higher dimension has distinguishing number only two. [4] The Petersen graph has distinguishing number 3.
The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j. The Cartesian product of two median graphs is another median graph. The graph of vertices and edges of an n-prism is the Cartesian product graph K 2 C n.
In mathematics, particularly in algebraic topology, the n-skeleton of a topological space X presented as a simplicial complex (resp. CW complex) refers to the subspace X n that is the union of the simplices of X (resp. cells of X) of dimensions m ≤ n.