enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    List of all nonabelian groups up to order 31 Order Id. [a] G o i Group Non-trivial proper subgroups [1] Cycle graph Properties 6 7 G 6 1: D 6 = S 3 = Z 3 ⋊ Z 2: Z 3, Z 2 (3) : Dihedral group, Dih 3, the smallest non-abelian group, symmetric group, smallest Frobenius group.

  3. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n. The free group in two elements is SQ universal; the above follows as any SQ universal group has subgroups of all countable ranks.

  4. Rank of an abelian group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_abelian_group

    In particular, any intermediate group Z n < A < Q n has rank n. Abelian groups of rank 0 are exactly the periodic abelian groups. The group Q of rational numbers has rank 1. Torsion-free abelian groups of rank 1 are realized as subgroups of Q and there is a satisfactory classification of them up to isomorphism. By contrast, there is no ...

  5. Rank of a group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_group

    If G is a finitely generated group, then the rank of G is a non-negative integer. The notion of rank of a group is a group-theoretic analog of the notion of dimension of a vector space. Indeed, for p-groups, the rank of the group P is the dimension of the vector space P/Φ(P), where Φ(P) is the Frattini subgroup.

  6. Torsion-free abelian group - Wikipedia

    en.wikipedia.org/wiki/Torsion-free_abelian_group

    A non-finitely generated countable example is given by the additive group of the polynomial ring [] (the free abelian group of countable rank). More complicated examples are the additive group of the rational field , or its subgroups such as [] (rational numbers whose denominator is a power of ).

  7. List of finite simple groups - Wikipedia

    en.wikipedia.org/wiki/List_of_finite_simple_groups

    F 4 (q) has a non-trivial graph automorphism when q is a power of 2. These groups are the automorphism groups of 8-dimensional Cayley algebras over finite fields, which gives them 7-dimensional representations. They also act on the corresponding Lie algebras of dimension 14. G 2 (q) has a non-trivial graph automorphism when q is a power of 3

  8. Finiteness properties of groups - Wikipedia

    en.wikipedia.org/.../Finiteness_properties_of_groups

    Negatively curved groups (hyperbolic or CAT(0) groups) are always of type F ∞. [7] Such a group is of type F if and only if it is torsion-free. As an example, cocompact S-arithmetic groups in algebraic groups over number fields are of type F ∞. The Borel–Serre compactification shows that this is also the case for non-cocompact arithmetic ...

  9. Group cohomology - Wikipedia

    en.wikipedia.org/wiki/Group_cohomology

    This is in fact the significance in group-theoretical terms of the unique non-trivial element of (/,),. An example of a second cohomology group is the Brauer group: it is the cohomology of the absolute Galois group of a field k which acts on the invertible elements in a separable closure: