Search results
Results from the WOW.Com Content Network
The main computer algebra systems (Maple, Mathematica, SageMath, PARI/GP) have each a variant of this method as the default algorithm for the real roots of a polynomial. The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in ...
Finding polynomial roots is a long-standing problem ... the domain is partitioned into two parts, and the algorithm decides - based on a small number of function ...
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
In the balanced assignment problem, both parts of the bipartite graph have the same number of vertices, denoted by n. One of the first polynomial-time algorithms for balanced assignment was the Hungarian algorithm. It is a global algorithm – it is based on improving a matching along augmenting paths (alternating paths between unmatched vertices).
FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. [1] To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements.
By formulating MAX-2-SAT as a problem of finding a cut (that is, a partition of the vertices into two subsets) maximizing the number of edges that have one endpoint in the first subset and one endpoint in the second, in a graph related to the implication graph, and applying semidefinite programming methods to this cut problem, it is possible to ...
The Characteristic Set Method is the first factorization-free algorithm, which was proposed for decomposing an algebraic variety into equidimensional components. Moreover, the Author, Wen-Tsun Wu, realized an implementation of this method and reported experimental data in his 1987 pioneer article titled "A zero structure theorem for polynomial equations solving". [1]
The problem that we are trying to solve is: given an odd composite number, find its integer factors. To achieve this, Shor's algorithm consists of two parts: A classical reduction of the factoring problem to the problem of order-finding.