Search results
Results from the WOW.Com Content Network
The main computer algebra systems (Maple, Mathematica, SageMath, PARI/GP) have each a variant of this method as the default algorithm for the real roots of a polynomial. The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in ...
If the original polynomial is the product of factors at least two of which are of degree 2 or higher, this technique only provides a partial factorization; otherwise the factorization is complete. In particular, if there is exactly one non-linear factor, it will be the polynomial left after all linear factors have been factorized out.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Since every polynomial can be reduced modulo ƒ(X) to a polynomial of degree n − 1 or lower, the space of residue classes can be identified with the space of polynomials of degree bounded by n − 1. A problem specific basis can be taken from Lagrange interpolation as the set of n polynomials
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
Interpolating two values yields a line: a polynomial of degree one. This is the basis of the secant method . Regula falsi is also an interpolation method that interpolates two points at a time but it differs from the secant method by using two points that are not necessarily the last two computed points.
That lemma says that if the polynomial factors in Q[X], then it also factors in Z[X] as a product of primitive polynomials. Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime.