enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    Because of Touchard's congruence, the Bell numbers are periodic modulo p, for every prime number p; for instance, for p = 2, the Bell numbers repeat the pattern odd-odd-even with period three. The period of this repetition, for an arbitrary prime number p , must be a divisor of

  3. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    The Pisano period, denoted π (n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins: This sequence has period 8, so π (3) = 8. For n = 3, this is a visualization of the Pisano period in the two-dimensional state space of the recurrence relation.

  4. Bell series - Wikipedia

    en.wikipedia.org/wiki/Bell_series

    In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell. Given an arithmetic function and a prime , define the formal power series , called the Bell series of modulo as: {\displaystyle f_ {p} (x)=\sum _ {n=0}^ {\infty }f (p^ {n})x ...

  5. Types of periodic tables - Wikipedia

    en.wikipedia.org/wiki/Types_of_periodic_tables

    1987 — Step-pyramid form of the periodic chart: Modernised version of 1882 Bayley [36] 1989 — Seaborg's electron shell table: Up to Z = 168 [37] 1995 — Klein's table: Breaks at the start of each new block [38] 2023 — Marks' snub-triangular version of Mendeleyev's 1869 table: First tier has sp elements rather than H and He alone [39]

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [ 1 ] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0 ...

  8. Stirling numbers of the second kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . [1] Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions.

  9. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2. Ne, 10, neon : 1s 2 2s 2 2p 6. Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6.