enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).

  4. 81 (number) - Wikipedia

    en.wikipedia.org/wiki/81_(number)

    81 is: the square of 9 and the second fourth-power of a prime; 3 4. with an aliquot sum of 40; within an aliquot sequence of three composite numbers (81,40,50,43,1,0) to the Prime in the 43-aliquot tree. a perfect totient number like all powers of three. [1] a heptagonal number. [2] an icosioctagonal number. [3] a centered octagonal number. [4 ...

  5. List of numbers - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/List_of_numbers

    A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.

  6. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Multiplying numbers to more than a couple of decimal places by hand is tedious and error-prone. Common logarithms were invented to simplify such calculations, since adding logarithms is equivalent to multiplying. The slide rule allowed numbers to be quickly multiplied to about three places of accuracy.

  7. Powerful number - Wikipedia

    en.wikipedia.org/wiki/Powerful_number

    A powerful number is a positive integer m such that for every prime number p dividing m, p 2 also divides m. Equivalently, a powerful number is the product of a square and a cube, that is, a number m of the form m = a 2 b 3, where a and b are positive integers. Powerful numbers are also known as squareful, square-full, or 2-full.

  8. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Some of the main branches of modern number theory include elementary number theory, analytic number theory, algebraic number theory, and geometric number theory. [81] Elementary number theory studies aspects of integers that can be investigated using elementary methods. Its topics include divisibility, factorization, and primality. [82]

  9. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    A number n that has more divisors than any x < n is a highly composite number (though the first two such numbers are 1 and 2). Composite numbers have also been called "rectangular numbers", but that name can also refer to the pronic numbers, numbers that are the product of two consecutive integers.