enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  4. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  5. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. The area of a parallelogram is twice the area of a triangle created by one of its diagonals. The area of a parallelogram is also equal to the magnitude of the vector cross product of two adjacent sides.

  6. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  7. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    This further implies that class is not a Hilbert space whenever ⁠ ⁠, as the parallelogram law is not satisfied. For the sake of counterexample, consider x = 1 A {\displaystyle x=1_{A}} and y = 1 B {\displaystyle y=1_{B}} for any two disjoint subsets A , B {\displaystyle A,B} of general domain Ω ⊂ R n {\displaystyle \Omega \subset \mathbb ...

  8. Midpoint polygon - Wikipedia

    en.wikipedia.org/wiki/Midpoint_polygon

    The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.

  9. Equipollence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Equipollence_(geometry)

    A property of Euclidean spaces is the parallelogram property of vectors: If two segments are equipollent, then they form two sides of a parallelogram: If a given vector holds between a and b, c and d, then the vector which holds between a and c is the same as that which holds between b and d.