enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =. However, to optimize a twice-differentiable f {\displaystyle f} , our goal is to find the roots of f ′ {\displaystyle f'} .

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it readily generalizes to higher-dimensional problems.

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Root-finding algorithm — algorithms for solving the equation f(x) = 0 General methods: Bisection method — simple and robust; linear convergence Lehmer–Schur algorithm — variant for complex functions; Fixed-point iteration; Newton's method — based on linear approximation around the current iterate; quadratic convergence

  6. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    For finding real roots of a polynomial, the common strategy is to divide the real line (or an interval of it where root are searched) into disjoint intervals until having at most one root in each interval. Such a procedure is called root isolation, and a resulting interval that contains exactly one root is an isolating interval for this root.

  7. Talk:Nth root algorithm - Wikipedia

    en.wikipedia.org/wiki/Talk:Nth_root_algorithm

    Halley's method is a well-documented root finding algorithm that can be applied to finding nth roots. It has the benefit of converging in cubic time as opposed to quadratic time for newton's method which is already covered in the article. The only catch is that the initial seed has to be a good guess for it to converge rapidly:

  8. Category:Root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Root-finding...

    A root-finding algorithm is a numerical method or algorithm for finding a value x such that f(x) = 0, for a given function f. Here, x is a single real number. Root-finding algorithms are studied in numerical analysis.

  9. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    Anderson's iterative method, which uses a least squares approach to the Jacobian. [9] Schubert's or sparse Broyden algorithm – a modification for sparse Jacobian matrices. [10] The Pulay approach, often used in density functional theory. [11] [12] A limited memory method by Srivastava for the root finding problem which only uses a few recent ...