Search results
Results from the WOW.Com Content Network
In contrast, DNA Pol I is the enzyme responsible for replacing RNA primers with DNA. DNA Pol I has a 5′ to 3′ exonuclease activity in addition to its polymerase activity, and uses its exonuclease activity to degrade the RNA primers ahead of it as it extends the DNA strand behind it, in a process called nick translation. Pol I is much less ...
It has become widely accepted in science [1] that early in the history of life on Earth, prior to the evolution of DNA and possibly of protein-based enzymes as well, an "RNA world" existed in which RNA served as both living organisms' storage method for genetic information—a role fulfilled today by DNA, except in the case of RNA viruses—and ...
The RNA copy made from a gene is then fed through a structure called a ribosome, which translates the sequence of nucleotides in the RNA into the correct sequence of amino acids and joins these amino acids together to make a complete protein chain. The new protein then folds up into its active form.
RNA-dependent DNA polymerases are a specialized class of polymerases that copy the sequence of an RNA strand into DNA. They include reverse transcriptase , which is a viral enzyme involved in the infection of cells by retroviruses , and telomerase , which is required for the replication of telomeres.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
Self-replication is a fundamental feature of life. It was proposed that self-replication emerged in the evolution of life when a molecule similar to a double-stranded polynucleotide (possibly like RNA) dissociated into single-stranded polynucleotides and each of these acted as a template for synthesis of a complementary strand producing two double stranded copies. [4]
The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
This RNA is complementary to the template 3′ → 5′ DNA strand, [1] with the exception that thymines (T) are replaced with uracils (U) in the RNA and possible errors. In bacteria, transcription is carried out by a single type of RNA polymerase, which needs to bind a DNA sequence called a Pribnow box with the help of the sigma factor protein ...