enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]

  3. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    Note that closed and bounded sets are not in general weakly compact in Hilbert spaces (consider the set consisting of an orthonormal basis in an infinite-dimensional Hilbert space which is closed and bounded but not weakly compact since it doesn't contain 0). However, bounded and weakly closed sets are weakly compact so as a consequence every ...

  4. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with the Hilbert–Schmidt norm). [4] The set of Hilbert–Schmidt operators is closed in the norm topology if, and only if, H is finite-dimensional.

  5. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.

  6. Fundamental theorem of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The sesquilinear form B : H × H → is separately uniformly continuous in each of its two arguments and hence can be extended to a separately continuous sesquilinear form on the completion of H; if H is Hausdorff then this completion is a Hilbert space. [1] A Hausdorff pre-Hilbert space that is complete is called a Hilbert space.

  7. Weak operator topology - Wikipedia

    en.wikipedia.org/wiki/Weak_operator_topology

    The linear functionals on the set of bounded operators on a Hilbert space that are continuous in the strong operator topology are precisely those that are continuous in the WOT (actually, the WOT is the weakest operator topology that leaves continuous all strongly continuous linear functionals on the set () of bounded operators on the Hilbert ...

  8. Hilbert–Schmidt theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_theorem

    In mathematical analysis, the Hilbert–Schmidt theorem, also known as the eigenfunction expansion theorem, is a fundamental result concerning compact, self-adjoint operators on Hilbert spaces. In the theory of partial differential equations , it is very useful in solving elliptic boundary value problems .

  9. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D