enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. atan2 - Wikipedia

    en.wikipedia.org/wiki/Atan2

    atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of ⁡ (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.

  3. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    If = then ⁡ is 45 degrees or radians. This means that if the real part and complex part are equal then the arctangent will equal π 4 {\textstyle {\frac {\pi }{4}}} . Since the arctangent of one has a very slow convergence rate if we find two complex numbers that when multiplied will result in the same real and imaginary part we will have a ...

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Subtracting ⁡ from both sides and dividing by 2 by two yields the power-reduction formula for sine: ⁡ = (⁡ ()). The half-angle formula for sine can be obtained by replacing θ {\displaystyle \theta } with θ / 2 {\displaystyle \theta /2} and taking the square-root of both sides: sin ⁡ ( θ / 2 ) = ± ( 1 − cos ⁡ θ ) / 2 ...

  5. CORDIC - Wikipedia

    en.wikipedia.org/wiki/CORDIC

    CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...

  6. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Quadrant 3 (angles from 180 to 270 degrees, or π to 3π/2 radians): Tangent and cotangent functions are positive in this quadrant. Quadrant 4 (angles from 270 to 360 degrees, or 3π/2 to 2π radians): Cosine and secant functions are positive in this quadrant. Other mnemonics include: All Stations To Central [6] All Silly Tom Cats [6]

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.

  8. Clock angle problem - Wikipedia

    en.wikipedia.org/wiki/Clock_angle_problem

    The angle is typically measured in degrees from the mark of number 12 clockwise. The time is usually based on a 12-hour clock. A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute.

  9. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    Its value is 0, 1, or 2 at different times of the year. Subtracting it leaves a small positive or negative fractional number of half turns, which is multiplied by 720, the number of minutes (12 hours) that the Earth takes to rotate one half turn relative to the Sun, to get the equation of time.