Search results
Results from the WOW.Com Content Network
In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.
Weisstein, Eric W. "Primitive Root". MathWorld. Web-based tool to interactively compute group tables by John Jones; OEIS sequence A033948 (Numbers that have a primitive root (the multiplicative group modulo n is cyclic)) Numbers n such that the multiplicative group modulo n is the direct product of k cyclic groups:
−1 is a primitive root mod 4 ... It is basic in the proof of Dirichlet's theorem. [29] [30] Classification of characters. Conductor; Primitive and induced characters
One can obtain such a root by choosing a () th primitive root of unity (that must exist by definition of λ), named and compute the power () /. If x is a primitive kth root of unity and also a (not necessarily primitive) ℓth root of unity, then k is a divisor of ℓ.
q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2 p + 1 would be congruent to 3 mod 3, impossible for a prime number. [ 16 ]
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, α ∈ GF( q ) is called a primitive element if it is a primitive ( q − 1) th root of unity in GF( q ) ; this means that each non-zero element of GF( q ) can be written as α i for some natural number i .
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...