enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    Suppose that one wants to define what it means for two sets to "have the same number of elements". One way to do this is to say that two sets "have the same number of elements", if and only if all the elements of one set can be paired with the elements of the other, in such a way that each element is paired with exactly one element.

  4. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  5. Function composition - Wikipedia

    en.wikipedia.org/wiki/Function_composition

    The composition of one-to-one (injective) functions is always one-to-one. Similarly, the composition of onto (surjective) functions is always onto. It follows that the composition of two bijections is also a bijection. The inverse function of a composition (assumed invertible) has the property that (f ∘ g) −1 = g −1 ∘ f −1.

  6. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  7. Geometric function theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_function_theory

    Thus is a one-to-one mapping of onto . If we can show that g − 1 {\displaystyle g^{-1}} , and consequently the composition, is analytic, we then have a conformal mapping of D 1 {\displaystyle D_{1}} onto D 2 {\displaystyle D_{2}} , proving "any two simply connected regions different from the whole plane C {\displaystyle \mathbb {C} } can be ...

  8. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    The function f : R → R defined by f(x) = 2x + 1 is surjective (and even bijective), because for every real number y, we have an x such that f(x) = y: such an appropriate x is (y − 1)/2. The function f : R → R defined by f(x) = x 3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial ...

  9. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Two metric spaces X and Y are called isometric if there is a bijective isometry from X to Y. The set of bijective isometries from a metric space to itself forms a group with respect to function composition, called the isometry group. There is also the weaker notion of path isometry or arcwise isometry: