Search results
Results from the WOW.Com Content Network
The real numbers form a topological group under addition. In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.
This realization of a combinatorial graph as a topological space is sometimes called a topological graph. 3-regular graphs can be considered as generic 1-dimensional CW complexes. Specifically, if X is a 1-dimensional CW complex, the attaching map for a 1-cell is a map from a two-point space to X, : {,}.
In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.
The notion of a Morse function can be generalized to consider functions that have nondegenerate manifolds of critical points. A Morse–Bott function is a smooth function on a manifold whose critical set is a closed submanifold and whose Hessian is non-degenerate in the normal direction. (Equivalently, the kernel of the Hessian at a critical ...
A CW complex is a space that has a filtration whose union is and such that . is a discrete space, called the set of 0-cells (vertices) in .; Each is obtained by attaching several n-disks, n-cells, to via maps ; i.e., the boundary of an n-disk is identified with the image of in .
Group I proteins have the N terminus on the far side and C terminus on the cytosolic side. Group II proteins have the C terminus on the far side and N terminus in the cytosol. However final topology is not the only criterion for defining transmembrane protein groups, rather location of topogenic determinants and mechanism of assembly is ...
A connected topological space X is called an Eilenberg–MacLane space of type (,), if it has n-th homotopy group isomorphic to G and all other homotopy groups trivial. Assuming that G is abelian in the case that n > 1 {\displaystyle n>1} , Eilenberg–MacLane spaces of type K ( G , n ) {\displaystyle K(G,n)} always exist, and are all weak ...
To compute the singular homology groups of a topological space one considers continuous functions : where denotes the -dimensional-standard-simplex. In an analogous way as described for simplicial homology groups, barycentric subdivision can be interpreted as an endomorphism of singular chain complexes.