enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos (⁠ 1 / 3 ⁠) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = ⁠ π / 2 ⁠ 90° Octahedron {3,4} (3.3.3.3) arccos (-⁠ 1 / 3 ⁠) 109.471° Dodecahedron {5,3} (5.5.5) arccos ...

  3. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In pyritohedral pyrite, the faces have a Miller index of (210), which means that the dihedral angle is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of approximately 106.6° and opposite two angles of approximately 102.6°. The following formulas show the measurements for the ...

  4. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    This fact can be used to calculate the dihedral angles themselves for a regular or edge-symmetric ideal polyhedron (in which all these angles are equal), by counting how many edges meet at each vertex: an ideal regular tetrahedron, cube or dodecahedron, with three edges per vertex, has dihedral angles = / = (), an ideal regular octahedron or ...

  5. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids , described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler .

  6. Medial disdyakis triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Medial_disdyakis...

    The dihedral angle equals ⁡ (). Part of each triangle lies within the solid, hence is invisible in solid models. Part of each triangle lies within the solid, hence is invisible in solid models. References

  7. Law of constancy of interfacial angles - Wikipedia

    en.wikipedia.org/wiki/Law_of_constancy_of...

    Dodecahedron built from smaller cubical units. The law of the constancy of interfacial angles was first observed by the Danish physician Nicolas Steno when studying quartz crystals [3] [4] (De solido intra solidum naturaliter contento, Florence, 1669), [5] [6] who noted that, although the crystals differed in appearance from one to another, the angles between corresponding faces were always ...

  8. Angular defect - Wikipedia

    en.wikipedia.org/wiki/Angular_defect

    The defect of any of the vertices of a regular dodecahedron (in which three regular pentagons meet at each vertex) is 36°, or π/5 radians, or 1/10 of a circle. Each of the angles measures 108°; three of these meet at each vertex, so the defect is 360° − (108° + 108° + 108°) = 36°.

  9. Pentagonal hexecontahedron - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_hexecontahedron

    The dihedral angle equals ⁡ (/ ()). Note that the face centers of the snub dodecahedron cannot serve directly as vertices of the pentagonal hexecontahedron: the four triangle centers lie in one plane but the pentagon center does not; it needs to be radially pushed out to make it coplanar with the triangle centers.