Search results
Results from the WOW.Com Content Network
Using data from Mars Global Surveyor, Mars Odyssey and the Mars Reconnaissance Orbiter, scientists have found widespread deposits of chloride minerals. Some of these chloride deposits have been identified to be a mixture of anhydrous chloride salt and regional basaltic regolith. These are located in the southern highlands of Mars. [36]
On Earth, chlorides are known to form through aqueous processes. [2] Similar processes are expected to be responsible for the formation of chloride deposits on Mars. The finding of these deposits is significant in that it provides further evidence for the presence of surface or subsurface water in ancient Mars. [3]
Using data from Mars Global Surveyor, Mars Odyssey and the Mars Reconnaissance Orbiter, scientists have found widespread deposits of chloride minerals. Usually chlorides are the last minerals to come out of solution. A picture below shows some deposits within the Phaethontis quadrangle. Evidence suggests that the deposits were formed from the ...
Using data from Mars Global Surveyor, Mars Odyssey and the Mars Reconnaissance Orbiter, scientists have found widespread deposits of chloride minerals. A picture below shows some deposits within the Phaethontis quadrangle. Evidence suggests that the deposits were formed from the evaporation of mineral enriched waters.
There may be much more water further below the surface; the instruments aboard the Mars Odyssey are only able to study the top meter or so of soil. If all holes in the soil were filled by water, this would correspond to a global layer of water 0.5 to 1.5 km deep. [9] The Phoenix lander confirmed the initial findings of the Mars Odyssey. [10]
This supports the theory of the long-term global weather of Mars consisting of cycles of global warming and cooling; during cooling periods, water gathered at the poles to form the ice layers, and then as global warming occurred, the unthawed water ice was covered by dust and dirt from Mars' frequent dust storms.
Between 1997 and 2006, the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor (MGS) spacecraft mapped the global mineral composition of the planet. [27] TES identified two global-scale volcanic units on Mars. Surface Type 1 (ST1) characterises the Noachian-aged highlands and consists of unaltered plagioclase- and clinopyroxene-rich ...
So, samples of material from the Eridania may give us insight into the environment of the early Earth. Chloride deposits were found where a shoreline existed. They were deposited as water evaporated from the sea. These chloride deposits are thought to be thin (less than 30 meters), because some craters do not display the chemical in their ejecta.