enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix difference equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_difference_equation

    A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For ...

  3. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    The finite difference of higher orders can be defined in recursive manner as Δ n h ≡ Δ h (Δ n − 1 h). Another equivalent definition is Δ n h ≡ [T h − I ] n. The difference operator Δ h is a linear operator, as such it satisfies Δ h [ α f + β g ](x) = α Δ h [ f ](x) + β Δ h [g](x). It also satisfies a special Leibniz rule:

  4. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    where () is an vector of functions of an underlying variable , ˙ is the vector of first derivatives of these functions, and () is an matrix of coefficients. In the case where A {\displaystyle \mathbf {A} } is constant and has n linearly independent eigenvectors , this differential equation has the following general solution,

  5. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if f {\displaystyle f} is a holomorphic function , real-valued on the real line, which can be evaluated at points in the complex plane near x {\displaystyle x} , then there are stable methods.

  6. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus the derivative of a vector y with respect to a scalar x is known as the tangent vector of the vector y, . Notice here that y : R 1 → R m . Example Simple examples of this include the velocity vector in Euclidean space , which is the tangent vector of the position vector (considered as a function of time).

  7. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    The most noteworthy property of cosine similarity is that it reflects a relative, rather than absolute, comparison of the individual vector dimensions. For any positive constant and vector , the vectors and are maximally similar. The measure is thus most appropriate for data where frequency is more important than absolute values; notably, term ...

  8. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The components of a vector are often represented arranged in a column. By contrast, a covector has components that transform like the reference axes. It lives in the dual vector space, and represents a linear map from vectors to scalars. The dot product operator involving vectors is a good example of a covector.

  9. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    Normally, a matrix represents a linear map, and the product of a matrix and a column vector represents the function application of the corresponding linear map to the vector whose coordinates form the column vector. The change-of-basis formula is a specific case of this general principle, although this is not immediately clear from its ...