Search results
Results from the WOW.Com Content Network
The mesosphere (/ ˈ m ɛ s ə s f ɪər, ˈ m ɛ z-, ˈ m iː s ə-,-z ə-/; [1] from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases.
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (10 9) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.
As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. [1] Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per kilometre (0.47 °C/km; 1.4 °F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 °C/km; 0.70 °F/mi) at 2,600 kilometres (1,600 mi). [3]
The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C (-148 °F or 173 K). [1]
The temperature on land rose by 1.59 °C while over the ocean it rose by 0.88 °C. [3] In 2020 the temperature was 1.2 °C above the pre-industrial era. [4] In September 2023 the temperature was 1.75 °C above pre-industrial level and during the entire year of 2023 is expected to be 1.4 °C above it. [5]
For premium support please call: 800-290-4726 more ways to reach us
Milankovitch emphasized the changes experienced at 65° north due to the great amount of land at that latitude. Land masses change temperature more quickly than oceans, because of the mixing of surface and deep water and the fact that soil has a lower volumetric heat capacity than water. [5]
Temperatures in the mesosphere decrease with altitude, and are the coldest in the Earth's atmosphere. [5] This decrease in temperature can be attributed to the diminishing radiation received from the Sun, after most of it has already been absorbed by the thermosphere. [3]