enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  3. Paradoxes of set theory - Wikipedia

    en.wikipedia.org/wiki/Paradoxes_of_set_theory

    Cardinal numbers can be defined as follows. Define two sets to have the same size by: there exists a bijection between the two sets (a one-to-one correspondence between the elements). Then a cardinal number is, by definition, a class consisting of all sets of the same size. To have the same size is an equivalence relation, and the cardinal ...

  4. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .

  5. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    aleph-nought, aleph-zero, or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal.The set of all finite ordinals, called or (where is the lowercase Greek letter omega), also has cardinality .

  6. Cardinal numeral - Wikipedia

    en.wikipedia.org/wiki/Cardinal_numeral

    In linguistics, and more precisely in traditional grammar, a cardinal numeral (or cardinal number word) is a part of speech used to count. Examples in English are the words one , two , three , and the compounds three hundred [and] forty-two and nine hundred [and] sixty .

  7. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    The continuum hypothesis says that =, i.e. is the smallest cardinal number bigger than , i.e. there is no set whose cardinality is strictly between that of the integers and that of the real numbers. The continuum hypothesis is independent of ZFC , a standard axiomatization of set theory; that is, it is impossible to prove the continuum ...

  8. List of large cardinal properties - Wikipedia

    en.wikipedia.org/wiki/List_of_large_cardinal...

    The following even stronger large cardinal properties are not consistent with the axiom of choice, but their existence has not yet been refuted in ZF alone (that is, without use of the axiom of choice). weakly Reinhardt cardinal, Reinhardt cardinal, Berkeley cardinal, super Reinhardt cardinal, totally Reinhardt cardinal

  9. Category:Cardinal numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Cardinal_numbers

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us